Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
Atemwegs- und Lungenkrankheiten ; 49(4):129-133, 2023.
Article in German | EMBASE | ID: covidwho-20242600

ABSTRACT

The coronavirus SARS-CoV-2 was detected in isolates of pneumonia patients in January 2020. The virus cannot multiply extracellularly but requires access to the cells of a host organism. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, to which it docks with its spikes. ACE2 belongs to the renin angiotensin system (RAS), whose inhibitors have been used for years against high blood pressure. Renin is an endopeptidase that is predominantly formed in the juxtaglomerular apparatus of the kidney and cleaves the decapeptide angiotensin I (Ang I) from angiotensinogen. Through the angiotensin-converting enzyme (ACE), another 2 C-terminal amino acids are removed from Ang I, so that finally the active octapeptide angiotensin II (Ang II) is formed. The biological effect of Ang II via the angiotensin II receptor subtype 1 (AT1-R) consists of vasoconstriction, fibrosis, proliferation, inflammation, and thrombosis formation. ACE2 is a peptidase that is a homolog of ACE. ACE2 is predominantly expressed by pulmonary alveolar epithelial cells in humans and has been detected in arterial and venous endothelial cells. In contrast to the dicarboxy-peptidase ACE, ACE2 is a monocarboxypeptidase that cleaves only one amino acid from the C-terminal end of the peptides. ACE2 can hydrolyze the nonapeptide Ang-(1-9) from the decapeptide Ang I and the heptapeptide Ang-(1-7) from the octapeptide Ang II. Ang-(1-7) acts predominantly antagonistically (vasodilatory, anti-fibrotic, anti-proliferative, anti-inflammatory, anti-thrombogenetically) via the G protein-coupled Mas receptor to the AT1-R-mediated effects of Ang II. In the pathogenesis of COVID-19 infection, it is therefore assumed that there is an imbalance due to overstimulation of the AT1 receptor in conjunction with a weakening of the biological effects of the Mas receptor.Copyright © 2022 Dustri-Verlag Dr. K. Feistle.

2.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-20238049

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

3.
Advances in Traditional Medicine ; 23(2):321-345, 2023.
Article in English | EMBASE | ID: covidwho-20236383

ABSTRACT

The current outbreak of COVID-19 is caused by the SARS-CoV-2 virus that has affected > 210 countries. Various steps are taken by different countries to tackle the current war-like health situation. In India, the Ministry of AYUSH released a self-care advisory for immunomodulation measures during the COVID-19 and this review article discusses the detailed scientific rationale associated with this advisory. Authors have spotted and presented in-depth insight of advisory in terms of immunomodulatory, antiviral, antibacterial, co-morbidity associated actions, and their probable mechanism of action. Immunomodulatory actions of advised herbs with no significant adverse drug reaction/toxicity strongly support the extension of advisory for COVID-19 prevention, prophylaxis, mitigations, and rehabilitation capacities. This advisory also emphasized Dhyana (meditation) and Yogasanas as a holistic approach in enhancing immunity, mental health, and quality of life. The present review may open-up new meadows for research and can provide better conceptual leads for future researches in immunomodulation, antiviral-development, psychoneuroimmunology, especially for COVID-19.Copyright © 2021, Institute of Korean Medicine, Kyung Hee University.

4.
Vestnik Rossijskoj Voenno-Medicinskoj Akademii ; 25(1):145-154, 2023.
Article in Russian | Scopus | ID: covidwho-20233350

ABSTRACT

A problem of the novel coronavirus infection pandemic is the absence of specific biomarkers, the determination of which would make it possible to assess the likelihood of a severe disease course, development of complications, immediate and long-term consequences, and effective etiotropic (antiviral) therapy. The severity of the novel coronavirus infection depends on various factors such as the initial state of health, immune status, age, smoking status, concomitant cardiovascular diseases, and diabetes mellitus. However, a severe disease course is also observed in patients without the aforementioned risk factors. The development of the disease and its complications depends on sex and geographical identity. Angiotensin-converting enzyme 2 (ACE2), associated by gene-gene interaction with ACE, plays a main role in the pathogenesis of the penetration of severe acute respiratory syndrome-2 coronavirus into the cell. The main body of information on this problem is represented by systematic meta-analyses and results of single-center cohort studies, which offer insufficient information to unequivocally assert the associations of ACE and ACE2 gene polymorphisms with pathological changes in the circulatory system during and after a new coronavirus infection. Differences in the incidence of ACE and ACE2 alleles may explain the differences between susceptible populations and/or response to the severe coronavirus infection. The above studies were carried out on the effect of the coronavirus in the initial period of the pandemic. For a more complete molecular genetic picture of the influence of polymorphism, persons with different strains of the coronavirus must be considered. In addition, no data are available regarding the expressions of ACE and ACE2 genes in response to a coronavirus infection. Moreover, the identification of the polymorphic variants of the genes of the renin–angiotensin–aldosterone system and ACE2 associated with a high risk of developing and worsening cardiovascular diseases may be one of the promising areas for the early diagnosis and prevention of post-COVID-19 changes. Therefore, all scientific interest research is aimed at studying genetic factors, such as single nucleotide polymorphisms that affect susceptibility to infection, severity of the disease course, and development of circulatory system consequences. In general, polymorphic variants of ACE and ACE2 and their interaction will help us understand this problem and systematize knowledge for further research in this area. All rights reserved © Eco-Vector, 2022.

5.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-2324154

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

6.
Neurogastroenterol Motil ; : e14598, 2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2323066

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme (ACE) and ACE2 are two major enzymes of the renin-angiotensin-aldosterone system (RAAS), which control the formation/degradation of angiotensin (Ang) II and Ang1-7, regulating their opposite effects. We aimed at evaluating the catalytic activity of ACE and ACE2 in the intestinal content and corresponding intestinal tissue along the gut of Wistar Han rats. METHODS: Portions of the ileum, cecum, proximal colon, and distal colon, and the corresponding intestinal content were collected from Wistar Han rats. Enzyme activity was evaluated by fluorometric assays using different substrates: Hippuryl-His-Leu for ACE-C-domain, Z-Phe-His-Leu for ACE-N-domain, and Mca-APK(Dnp) for ACE2. ACE and ACE2 concentration was assessed by ELISA. Ratios concerning concentrations and activities were calculated to evaluate the balance of the RAAS. Statistical analysis was performed using Friedman test followed by Dunn's multiple comparisons test or Wilcoxon matched-pairs test whenever needed. KEY RESULTS: ACE and ACE2 are catalytically active in the intestinal content along the rat gut. The ACE N-domain shows higher activity than the C-domain both in the intestinal content and in the intestinal tissue. ACE and ACE2 are globally more active in the intestinal content than in the corresponding intestinal tissue. There was a distal-to-proximal prevalence of ACE2 over ACE in the intestinal tissue. CONCLUSIONS & INFERENCES: This work is the first to report the presence of catalytically active ACE and ACE2 in the rat intestinal content, supporting future research on the regulatory role of the intestinal RAAS on gut function and a putative link to the microbiome.

7.
Russian Journal of Infection and Immunity ; 13(1):171-173, 2023.
Article in English | EMBASE | ID: covidwho-2320208

ABSTRACT

Coronavirus SARS-CoV-2 is responsible for the coronavirus disease (COVID-19) cause of the recent global pandemic, which is causing thousands of deaths worldwide and represents a health challenge with few precedents in human history. The angiotensin 2 conversion enzyme (ACE-2) has been identified as the receptor that facilitates access to SARSCoV-2 in cells;evidence shows that its concentration varies during the various stages of viral infection. Therapeutic agents modifying the renin-angiotensin system (RAS) may be able to modulate the concentration of ACE-2 and the various components of the system. In this article we examine the latest evidence on the association between the use of RAS modifying agents and coronavirus 2019 (COVID-19) disease caused by SARS-CoV-2. Our investigation and critical literature research does not suggest discontinuation of ACEIs/ARBs treatment in clinical practice as there is a lack of robust evidence. However, we recommend further well-structured epidemiological studies investigating this sensitive issue that may provide important new suggestions for implementing guidelines.Copyright © Vitiello A., Ferrara F., 2023.

8.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-2316157

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

9.
Pediatric Hematology Oncology Journal ; 8(1):1-3, 2023.
Article in English | Scopus | ID: covidwho-2315708

ABSTRACT

Introduction: Wolman disease is a rare genetic disorder with an autosomal recessive inheritance. A mutation in the LIPA gene causes lysosomal acid lipase (LAL) deficiency results in lipid storage and adrenal insufficiency. Death in early infancy is due to liver failure. Patients and methods: We describe the clinical course of a three-month-old infant diagnosed with Wolman disease. A rapid mutational analysis confirmed a LIPA gene defect. Results: He underwent matched unrelated donor peripheral blood stem cell hematopoietic stem cell transplantation (HSCT) at 3 months of age, with a treosulfan-based conditioning, which resulted in engraftment with donor-derived hematopoietic cells. He required supportive care for sinusoidal obstruction syndrome and mucositis. He was administered low dose prednisolone for grade I skin graft versus host disease, and a complete donor chimerism was documented on several occasions. At one year post HSCT, his growth and development were optimal, and there was no hepatosplenomegaly. He is maintained on glucocorticoid and mineralocorticoid supplements for primary hypoaldosteronism. Conclusion: The case emphasizes the timely diagnosis and the potential for successful treatment of Wolman disease by HSCT. © 2022 Pediatric Hematology Oncology Chapter of Indian Academy of Pediatrics

10.
Horizonte Medico ; 23(1) (no pagination), 2023.
Article in Spanish | EMBASE | ID: covidwho-2315662

ABSTRACT

Cardiovascular risk and diseases among patients recovered from COVID-19 is a recent field of study in the world medical literature and is also of vital importance because a large number of patients develop complications once the acute phase of the disease is over. The broad spectrum of myocardial injury in cardiovascular diseases can range from the asymptomatic elevation of cardiac troponin levels to the development of fulminant myocarditis and/or circulatory shock, which can leave significant sequelae. Despite the fact that there is no clear strategy to treat cardiac events that occur during COVID-19 infection and taking into account that treatment is mainly aimed at relieving patients' symptoms as they arise, the objective of this work was to find out and collect current evidence on this subject, so that readers can be offered a reference guide in Spanish that contributes to the development of their health profession. The methodology used was a literature search in databases including Medline, Scopus and ScienceDirect within a time window between 2019 and 2022. The main results revealed that the molecular and pathophysiological mechanisms involved in post-COVID-19 syndrome include the renin-angiotensin-aldosterone system since SARS-CoV-2 tropism is linked to angiotensin-converting enzyme 2. This causes an alteration of the neurohumoral response of the cardiovascular, renal and digestive systems, generating deficits in the signaling pathways and causing direct damage to the heart, lungs and other organs. Post-COVID-19 syndrome, in general, is defined as the occurrence or persistence of symptoms three or four weeks after the acute phase of the disease. This could then be considered as a time window of risk and strict follow-up to assess in a personalized way the risk among the different groups of patients, especially those with a past history of cardiovascular disease. The main results revealed disorders such as heart failure, arrhythmias, pericarditis and myocarditis, which require early detection and occur days or even weeks after the acute phase of COVID-19.Copyright © La revista. Publicado por la Universidad de San Martin de Porres, Peru.

11.
Rheumatology (Bulgaria) ; 30(4):34-40, 2023.
Article in English | EMBASE | ID: covidwho-2313121

ABSTRACT

Although it has been almost three years since the World Health Organization (WHO) declared a pandemic, COVID-19 is still an unsolved problem, thereby attracting great scientific interest. The disease has a heterogeneous clinical picture with multiple manifestations from different organs and systems. Currently, COVID-19 is perceived as a polysyndromic inflammatory disease involving not only the respiratory system, but also the musculoskeletal system, the cardiovascular system, the skin, the excretory and the nervous system, and is accompanied by a number of hematological, gastrohepatoenterological and endocrine disorders. Various pain phenomena also appear in the clinical presentation of the disease, often as a single manifestation or in combination with symptoms from different organs and systems. The pathogenesis of pain is complex and there is still no consensus on the exact driving mechanisms. Several different signaling pathways play an important role in the generation of pain impulses and perception. They are different for different types of pain. At this stage, the role of angiotensin-converting enzyme 2 (ACE), the renin-angiotensin system (RAC), angiotensin 2 receptors (AT2R), direct neuronal invasion of the virus, the involvement of pro-inflammatory cytokines, hypoxia, the involvement of macrophages, is discussed. as well as the role of overactivity of the immune system, causing the so-called "cytokine storm". Pain is the result of complex biochemical processes influenced to varying degrees by biological, physiological and social factors. Our knowledge at this stage remains scarce and is the subject of many studies on the key pathogenic mechanisms. Therefore, the purpose of this review is to describe the known mechanisms for the occurrence and persistence of pain in patients with COVID-19, as well as to classify the pain phenomena and present its most common localizations. The diagnosis and treatment of COVID-19 and associated pain should be carried out by a multidisciplinary team of specialists, given the heterogeneous clinical presentation of the disease.Copyright © 2023 Medical Information Center. All rights reserved.

12.
J Clin Endocrinol Metab ; 107(12): 3242-3251, 2022 11 25.
Article in English | MEDLINE | ID: covidwho-2320517

ABSTRACT

CONTEXT: The plasma concentrations of angiotensin-converting enzyme 2 (pACE2) has been independently associated with cardiovascular diseases. OBJECTIVE: Higher pACE2 concentrations may be found in patients with primary aldosteronism (PA) and might lead to increased cardiovascular events. METHODS: Using an inception observational cohort, we examined pACE2 among 168 incident patients with PA. The expression of ACE2, serine protease 2 (TMPRSS2), and metalloprotease 17 (ADAM17) were assessed in peripheral blood mononuclear cells. RESULTS: Incident PA and essential hypertension (EH) patients had similarly elevated pACE2 (47.04 ± 22.06 vs 46.73 ± 21.06 ng/mL; P = .937). Age was negatively (ß = -2.15; P = .033) and higher serum potassium level (ß = 2.29; P = .024) was positively correlated with higher pACE2 in PA patients. Clinical complete hypertension remission after adrenalectomy (Primary Aldosteronism Surgery Outcome criteria) was achieved in 36 (50%) of 72 surgically treated unilateral PA (uPA) patients. At follow-up, pACE2 decreased in surgically treated patients who had (P < .001) or had no (P = .006) hypertension remission, but the pACE2 attenuation was not statistically significant in uPA (P = .085) and bilateral PA (P = .409) administered with mineralocorticoid receptor antagonist (MRA). Persistently elevated pACE2 (> 23 ng/mL) after targeted treatments was related to all-cause mortality and cardiovascular events among PA patients (hazard ratio = 8.8; P = .04); with a mean follow-up of 3.29 years. TMPRSS2 messenger RNA (mRNA) expression was higher in uPA (P = .018) and EH (P = .038) patients than in normotensive controls; it was also decreased after adrenalectomy (P < .001). CONCLUSION: PA and EH patients had elevated pACE2 and higher expression of TMPRSS2 mRNA compared to those of normotensive population. Persistently elevated pACE2 (> 23 ng/mL) after targeted treatments was associated risk of mortality and incident cardiovascular events.


Subject(s)
Cardiovascular Diseases , Hyperaldosteronism , Hypertension , Humans , Angiotensin-Converting Enzyme 2 , Leukocytes, Mononuclear , Adrenalectomy/adverse effects , Hypertension/etiology , Essential Hypertension/etiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/complications , RNA, Messenger , Aldosterone
13.
Medecine Intensive Reanimation ; 30:43-52, 2021.
Article in French | EMBASE | ID: covidwho-2295250

ABSTRACT

Acute kidney injury (AKI) during SARS-CoV-2 infection is frequent and associated with mortality. Pathophysiology of AKI is multifactorial, and encompasses direct (viral invasion, endothelitis and thrombosis, renin-angiotensin-aldosteron system activation, cytokine elevation) and undirect mechanisms (hemodynamic instability, effect of mechanical ventilation, nephrotoxic medications). Acute tubular necrosis is the most frequent histological lesion identified, but glomerular disease can also be observed. To date, there is no specific treatment of SARS-CoV-2 induced AKI.Copyright © SRLF 2021.

14.
Herz ; 48(3): 206-211, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2294530

ABSTRACT

The COVID-19 pandemic led to an enormous burden on healthcare systems worldwide. Causal therapy is still in its infancy. Contrary to initial views that the use of angiotensin-converting enzyme inhibitors (ACEi)/angiotensin II receptor blockers (ARBs) may increase the risk for a deleterious disease course, it has been shown that these agents may actually be beneficial for patients affected by COVID-19. In this article, we provide an overview of the three most commonly used classes of drugs in cardiovascular disease (ACEi/ARB, statins, beta-blockers) and their potential role in COVID-19 therapy. More results from randomized clinical trials are necessary to identify patients that can benefit most from the use of the respective drugs.


Subject(s)
COVID-19 , Cardiovascular Agents , Hypertension , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System , Angiotensin Receptor Antagonists/therapeutic use , Pandemics , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Hypertension/drug therapy
15.
European Journal of Molecular and Clinical Medicine ; 7(9):3924-3929, 2020.
Article in English | EMBASE | ID: covidwho-2277892

ABSTRACT

Introduction- Electrolyte balance of the body is maintained by renin angiotensin aldosterone system. Some previous studies suggested that COVID-19 is associated with gastrointestinal symptoms, such as diarrhea and vomiting. This may results in electrolyte disturbances in patients. Electrolytes in body like sodium (Na), potassium (K). Chloride (Cl) plays an important physiological role in maintaining acid base and water balance of cells of the body. Aims and objectives: Our study aimed to compare some electrolyte between covid 19 and non-covid patients retrospectively. Material(s) and Method(s): This retrospective study included total 57 males and 43 females in the age group of 28 to 65 years. The results were compared with 100 age and sex matched healthy controls. Estimation of serum electrolytes was done with the collected venous blood samples using the ion selective electrode technique in an electrolyte analyzer. Analysis was done using SPSS V 25 Software. Chi-square and t-test were used to see association and difference between two variable respectively. Result(s): We have found that covid 19 is associated with low levels of electrolytes like Na, K, Cl. Chloride levels in both the groups was not statistically significant. But Hyponatremia and Hypokalemia were observed in cases group with high statical Signficance. Conclusion(s): Study found that electrolytes deterioration in these patients play a critical role in patients management. Thus a monitoring of electrolyte is essential throughout their illness to manage covid patients to improve their quality of life.Copyright © 2020 Ubiquity Press. All rights reserved.

16.
Reviews and Research in Medical Microbiology ; 33(3):129-138, 2022.
Article in English | EMBASE | ID: covidwho-2276029

ABSTRACT

Coronavirus disease 2019 was announced as a pandemic by the WHO on 11 February 2020. Since that time, challenges have arisen regarding the use of supplements to optimally support the immune system in the general population, and especially in older adults. The severity of severe acute respiratory syndrome coronavirus 2 infection varies significantly with age, being generally more severe in geriatric patients. There is evidence supporting the involvement of vitamin D in different processes related to the immune response. Some observational studies have related the decrease in vitamin D levels to the severity of coronavirus disease 2019, suggesting a protective role of vitamin D in this disease. In this narrative review, we analyze the possible role of vitamin D in modulating the immune mechanisms that are activated during severe acute respiratory syndrome coronavirus 2 infection, with special emphasis on older adults.Copyright © 2022 Lippincott Williams and Wilkins. All rights reserved.

17.
Coronaviruses ; 3(4) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2272801

ABSTRACT

Coronaviruses are a leading cause of emerging life-threatening diseases, as evidenced by the ongoing coronavirus disease pandemic (COVID-19). According to complete genome sequence analysis reports, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, has a sequence identity highly similar to the earlier severe acute respiratory syndrome coronavirus (SARS-CoV). The SARS-CoV-2 has the same mode of transmission, replication, and pathogenicity as SARS-CoV. The SARS-CoV-2 spike protein's receptor-binding domain (RBD) binds to host angiotensin-converting enzyme-2 (ACE2). The ACE2 is overexpressed in various cells, most prominently epithelial cells of the lung (surface of type 1 and 2 pneumocytes), intestine, liver, kidney, and nervous system. As a result, these organs are more vulnerable to SARS-CoV-2 infection. Furthermore, renin-angiotensin system (RAS) blockers, which are used to treat cardiovascular diseases, intensify ACE2 expression, leading to an increase in the risk of COVID-19. ACE2 hydrolyzes angioten-sin-II (carboxypeptidase) to heptapeptide angiotensin (1-7) and releases a C-terminal amino acid. By blocking the interaction of spike protein with ACE2, the SARS-CoV-2 entry into the host cell and inter-nalization can be avoided. The pathogenicity of SARS-CoV-2 could be reduced by preventing the RBD from attaching to ACE2-expressing cells. Therefore, inhibition or down-regulation of ACE2 in host cells represents a therapeutic strategy to fight against COVID-19. However, ACE2 plays an essential role in the physiological pathway, protecting against hypertension, heart failure, myocardial infarction, acute respiratory lung disease, and diabetes. Given the importance of ACE's homeostatic role, targeting of ACE2 should be realized with caution. Above all, focusing on the SARS-CoV-2 spike protein and the ACE2 gene in the host cell is an excellent way to avoid viral mutation and resistance. The current review summarises the sequence analysis, structure of coronavirus, ACE2, spike protein-ACE2 complex, essential structural characteristics of the spike protein RBD, and ACE2 targeted approaches for anti-coronaviral drug design and development.Copyright © 2022 Bentham Science Publishers.

18.
Coronaviruses ; 3(5) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2268502
19.
Endokrinologya ; 27(1):30-36, 2022.
Article in Bulgarian | EMBASE | ID: covidwho-2266915

ABSTRACT

Polycystic ovary syndrome (PCOS) is generally characterized by hyperandrogenism, obesity, chronic low-grade inflammation, abnormalities in carbohydrate and lipid metabolism, vit. D deficiency and gut microbiota dysbiosis. Each of the aforementioned disturbances might be considered as a risk factor for increased SARS-CoV-2 susceptibility and more severe COVID-19 infection in women with PCOS. Hyperandrogenism is thought to play an essential role for determining the grade of susceptibility as well as the risk of severe COVID-19 infection in PCOS. It could be explained by the expression of a specific cellular co-receptor - transmembrane serine protease-2 (TMPRSS2), the process of androgen-dependent immune modulation and that of the stimulated renin-angiotensin system (RAS). Android obesity, commonly seen in PCOS, represents a condition of chronic low-grade inflammation that leads to the development of immune dysfunction and increased sensitivity to SARS-CoV-2 among the carriers of this syndrome. In addition, vit. D deficiency and gut dysbiosis have been described as other potential pathophysiological factors contributing to an increased risk for severe COVID-19 in women with PCOS.Copyright © 2022 Medical Information Center. All rights reserved.

20.
Endokrinologya ; 27(1):30-36, 2022.
Article in Bulgarian | EMBASE | ID: covidwho-2266914

ABSTRACT

Polycystic ovary syndrome (PCOS) is generally characterized by hyperandrogenism, obesity, chronic low-grade inflammation, abnormalities in carbohydrate and lipid metabolism, vit. D deficiency and gut microbiota dysbiosis. Each of the aforementioned disturbances might be considered as a risk factor for increased SARS-CoV-2 susceptibility and more severe COVID-19 infection in women with PCOS. Hyperandrogenism is thought to play an essential role for determining the grade of susceptibility as well as the risk of severe COVID-19 infection in PCOS. It could be explained by the expression of a specific cellular co-receptor - transmembrane serine protease-2 (TMPRSS2), the process of androgen-dependent immune modulation and that of the stimulated renin-angiotensin system (RAS). Android obesity, commonly seen in PCOS, represents a condition of chronic low-grade inflammation that leads to the development of immune dysfunction and increased sensitivity to SARS-CoV-2 among the carriers of this syndrome. In addition, vit. D deficiency and gut dysbiosis have been described as other potential pathophysiological factors contributing to an increased risk for severe COVID-19 in women with PCOS.Copyright © 2022 Medical Information Center. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL